HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 DIGITAL LOGIC DESIGN

(Common to CSE, CSE(IOTCSBT) Branches)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u> Answer all the questions in Part-A (5X2=10M)

$- \cdots - \cdots - 1$										
Q.No.		Questions	Marks	CO	KL					
1	a)	Convert gray code 10101110 into its binary equivalent.	[2M]	1						
	b)	Draw the NOR gate using NAND gate.	[2M]	2						
	c)	Draw the K map for 4 variables.	[2M]	3						
	d)	What is the difference between decoder and encoder?	[2M]	4						
	e)	Draw the circuit diagram for SR flip flop.	[2M]	5						

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL		
UNIT-I							
2.	a)	Convert the following to Decimal and then to Octal. i) 125F ₁₆ ii) 10010011 ₂	[5M]	1			
	b)	The binary numbers listed have a sign bit in the left most position and if negative, are in 1's complement form. Perform the arithmetic operations i) 101011 + 111000 ii) 001110 + 110010	[5M]	1			
OR							
3.	a)	Perform the $(12.04)_{10} - (17.12)_{10}$ using 2's complement method	[5M]	1			
	b)	A receiver with even parity hamming code receives the data 1110110. Determine the correct code.	[5M]	1			
		UNIT-II					
4.	a)	State duality theorem. List Boolean laws and their duals.	[5M]	2			
	b)	Test the given expression into canonical SOP form i) f = AB+BC+CA ii) f=A+AB+ABC	[5M]	2			
		OR					
5.	a)	Reduce the Boolean expression	[5M]	2			
		i) $F = \overline{(\overline{X} \cdot \overline{Y} + Z)} + Z + XY + WZ$ into three literals.					
		ii) $F = \overline{A} \cdot \overline{C} + ABC + A \cdot \overline{C} + A \cdot \overline{B}$ into two literals.					
	b)	Implement the following function F with the following two levels formsa) NAND-ANDb) AND-NOR $F(A,B,C,D) = \sum (0,1,2,3,4,8,9,12).$	[5M]	2			
UNIT-III							
6.	a)	Obtain minimal SOP expression for the given Boolean function using K- map, and realize using NAND gates. $F = \sum m (0,1,4,5,6,7,9,11,15) + \sum d(10,14)$	[5M]	3			

R18

			```				
	b)	Simplify the following Boolean expressions using K-map and implement using NOR gates. F(A,B,C,D)=AB'C' + AC+A'CD'	[5M]	3			
OR							
7.	a)	Reduce the following using k-map and implement it in NAND logic $F=\pi M(0,1,2,3,4,7)$	[5M]	3			
	b)	Obtain minimal SOP expression for the Boolean function $F = \sum m (0,5,7,8,9,10,11,14,15)$ using K-map, and realize using NAND gates.	[5M]	3			
UNIT-IV							
8.	a)	Design a combinational logic circuit for full-adder and give its applications	[5M]	4			
	b)	Realize 5-to-32 line decoder using one 2-to-4 and four 3-to-8 decoders	[5M]	4			
OR							
9.	a)	Write about combinational logic circuit for BCD adder.	[5M]	4			
	b)	Draw 16x1 multiplexer tree using 4x1 multiplexer.	[5M]	4			
UNIT-V							
10.	a)	Discuss the T- flip flop & D – flip flop using truth table and circuit.	[5M]	5			
	b)	Write about Master Slave JK flip flop	[5M]	5			
OR							
11.	a)	Draw the circuit of JK flip-flop and explain its operation with the help of its function table.	[5M]	5			
	b)	Design a Mod-8 asynchronous up counter.	[5M]	5			

R18

*****