PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023
DIGITAL LOGIC DESIGN
(Common to CSE, CSE(IOTCSBT) Branches)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A $(5 \mathrm{X} 2=10 \mathrm{M})$

Q.No.		Questions	Marks	CO	KL
1	a)	Convert gray code 10101110 into its binary equivalent.	$[2 \mathrm{M}]$	1	
	b)	Draw the NOR gate using NAND gate.	$[2 \mathrm{M}]$	2	
	c)	Draw the K map for 4 variables.	$[2 \mathrm{M}]$	3	
	d)	What is the difference between decoder and encoder?	$[2 \mathrm{M}]$	4	
	e)	Draw the circuit diagram for SR flip flop.	$[2 \mathrm{M}]$	5	

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Convert the following to Decimal and then to Octal. i) $125 \mathrm{~F}_{16}$ ii) 10010011_{2}	[5M]	1	
	b)	The binary numbers listed have a sign bit in the left most position and if negative, are in 1's complement form. Perform the arithmetic operations i) $101011+111000$ ii) $001110+110010$	[5M]	1	
OR					
3.	a)		[5M]	1	
	b)	A receiver with even parity hamming code receives the data 1110110. Determine the correct code.	[5M]	1	
UNIT-II					
4.	a)	State duality theorem. List Boolean laws and their duals.	[5M]	2	
	b)	Test the given expression into canonical SOP form i) $f=A B+B C+C A$ ii) $f=A+A B+A B C$	[5M]	2	
OR					
5.	a)	Reduce the Boolean expression i) $F=(\overline{\bar{X}} \cdot \bar{Y}+Z)+Z+X Y+W Z$ into three literals. ii) $F=\bar{A} \cdot \bar{C}+A B C+A \cdot \bar{C}+A \cdot \bar{B}$ into two literals.	[5M]	2	
	b)	Implement the following function F with the following two levels forms a) NAND-AND b) AND-NOR $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,2,3,4,8,9,12) .$	[5M]	2	
UNIT-III					
6.	a)	Obtain minimal SOP expression for the given Boolean function using Kmap, and realize using NAND gates. $\mathrm{F}=\sum \mathrm{m}(0,1,4,5,6,7,9,11,15)+\sum \mathrm{d}(10,14)$	[5M]	3	

	b)	Simplify the following Boolean expressions using K-map and implement using NOR gates. $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\mathrm{AB} \mathrm{C}^{\prime}+\mathrm{AC}+\mathrm{A}^{\prime} \mathrm{CD}^{\prime}$	[5M]	3	
OR					
7.	a)	Reduce the following using k-map and implement it in NAND logic $\mathrm{F}=\pi \mathrm{M}(0,1,2,3,4,7)$	[5M]	3	
	b)	Obtain minimal SOP expression for the Boolean function $\mathrm{F}=\sum \mathrm{m}(0,5,7,8,9,10,11,14,15)$ using K -map, and realize using NAND gates.	[5M]	3	
UNIT-IV					
8.	a)	Design a combinational logic circuit for full-adder and give its applications	[5M]	4	
	b)	Realize 5-to-32 line decoder using one 2-to-4 and four 3-to-8 decoders	[5M]	4	
OR					
9.	a)	Write about combinational logic circuit for BCD adder.	[5M]	4	
	b)	Draw 16x1 multiplexer tree using 4x1 multiplexer.	[5M]	4	
UNIT-V					
10.	a)	Discuss the T- flip flop \& D - flip flop using truth table and circuit.	[5M]	5	
	b)	Write about Master Slave JK flip flop	[5M]	5	
OR					
11.	a)	Draw the circuit of JK flip-flop and explain its operation with the help of its function table.	[5M]	5	
	b)	Design a Mod-8 asynchronous up counter.	[5M]	5	

